
1

All profits from book sales will be donated to coding charities.

WHY HAVE WE WRITTEN THIS BOOK?

Welcome to the third edition of "Developer Marketing and
Relations: The Essential Guide". The history of this book goes
back to October 2017, during the Future Developer Summit.
There, Andreas Constantinou and Nicolas Sauvage fully
recognized the fragmented nature of developer relations or
DevRel – from the types of companies, the products they
represented, and the knowledge of the practitioners. It was there
we witnessed that the best practices were often locked behind
the doors of the companies that mastered them. We knew we
wanted to work with these leaders and develop an essential
guide to share this knowledge with a broader audience of
developer relations, evangelists and advocates, developer
marketing practitioners and beyond.

As we have watched the practice of DevRel grow and evolve
over the last three years, there is a continued need for education
of what DevRel is, along with the strategy and tactics needed to
run a successful program. The good news is, many of the
leading practitioners from the best companies agreed to share
their knowledge, stories, learnings, and best practices in this
guide! We think you’ll find the information insightful, whether you
are a seasoned professional in developer relations or you are
just getting started.

A question we often get asked at SlashData is: “Can you help us
understand how Mozilla, Google, or Microsoft practice developer
marketing?” (replace names with your favorite tech brands). Well
that's exactly what this book aims to accomplish.

This third edition includes the original chapters from the first
edition, 9 new chapters and one updated. This guide is arranged
in an order that takes you from strategic issues to more tactical
issues. You can read from start to finish, or jump into a particular
chapter that focuses on what you need to know right now. At a
strategic level, you may want to read “Using Developer Personas
to Stay Customer-Obsessed” from Cliff Simpkins of Microsoft, or
if you are building out a program you might try “Structuring
Developer Relations”, by Dirk Primbs of Google. If you are just
starting out, be sure to read, “Starting from Scratch: How to Build
a Developer Marketing Program”, by Luke Kilpatrick of Nutanix. If
you need to get many stakeholders together in a large

All profits from book sales will be donated to coding charities.

organization, the “The Developer Relations Council: Leading and
Aligning Developer Marketing within Large Companies” by
Arabella David of Salesforce - a new chapter for the third edition-
is a must. Then, learn how to understand numbers and KPIs in
our new chapter “Measuring the success of a developer
communications strategy” by our very own Rich Muir of
SlashData.

We have a few chapters on events which have become a staple
in the industry, such as “Growing Up By Scaling Down: How A
Small Developer Event Can Make Big Impacts On Your
Ecosystem”, co-authored by Neil Mansilla of Atlassian, and
“Behind the Scenes Of Great Developer Events”, by Katherine
Miller of Google. We must note that this edition is being launched
during the COVID-19 pandemic, which has made the planners
behind many programs re-evaluate their tactics, so you may
want to read “How To Connect With Developers When You Can’t
Meet Them”, by Pablo Fraile and Rex St. John of Arm.

As mentioned, developer programs exist in many types, as
different companies are marketing different types of products to
developers. Ana Schafer and Christine Jorgensen of Qualcomm
describe their experiences with communities around hardware in
“Hardware Is the New Software - Building A Developer
Community Around A Chip Instead Of An SDK”. APIs are well
known as a key product in DevRel so we are pleased to bring
you a new chapter by Mehdi Medjaoui, founder of GDPR.DEV
and APIdays conferences, on “Developer Relations and APIs”.

We can’t list all of the great chapters here, but we would be
remiss if we didn’t point out the chapters on community, the
heart and soul of any leading developer relations program. Be
sure to read “The Power Of Community” by Jacob Lehrbaum of
Salesforce, and the new chapter “Building an Inclusive
Developer Community” by Leandro Margulis, based on his
award-winning days at TomTom.

We always love to hear your comments – perhaps you read
something that made a difference for your program, or you have
your own story to tell. Please reach out to us at sdata.me/dev-
marketing-book and tell us about it

All profits from this book’s sales will be donated to coding
organisations that encourage and assist the developers of
tomorrow. Your support is much appreciated in helping out these

All profits from book sales will be donated to coding charities.

worthy causes – more details can be found at sdata.me/dev-
marketing-guide.

Andreas Constantinou, Founder & CEO, SlashData

Nicolas Sauvage, President & Managing Director, TDK Ventures

Caroline Lewko and Dana Fujiwawa, Editors of the third edition, WIP

September 2020

All profits from book sales will be donated to coding charities.

Introduction | Measuring the success of a

developer communications

strategy

Richard Muir: Data Journalist - SlashData

In the previous edition of this book, we introduced the idea of the
developer as a decision-maker. The developer as an influencer.
The developer as a powerful agent within an influential team,
steering important technological decisions and being personally
invested in the outcome.

With this in mind, successful communication is crucial, especially
communicating with them in their language and through the
channels they use. With developers being such a diverse (and
sometimes challenging group with which to engage), the stakes
have never been higher for getting your communications right.
Here we’ll help you to decide what to measure, and how to
define the success of your team and your business.

https://www.developerpopulation.com/?utm_source=BookFreeChapter&utm_medium=Download&utm_campaign=DPL

All profits from book sales will be donated to coding charities.

How do you measure success and why does it matter?

Tl;dr: Measuring success lets you:

• Understand what works, so you can do more of it

• Communicate successes and failures

• Justify your decisions

• Allocate resources effectively

• Track your progress

• Time travel (no, seriously)

Before we get into the how, let’s dip our toes into the why. Why
does measuring success matter? Here at SlashData, we believe
that data beats opinions. Every time. The short answer,
therefore, is that you should measure success because it’s the
only way of understanding the truth of a situation. Measuring the
success of your developer relations program is the only way to
know if what you’re doing is working. Not only that, measuring
the results helps you to understand what works well, so you can
do more of it, and what works not so well, so you can do less of
it.

Another way of looking at this is that measuring the impact of
your efforts is the best way to allocate resources efficiently, and
for maximum effectiveness. For example, we see time after time
that developers want technology companies to spend more time
and effort answering questions on forums, and less on
organizing conferences. Getting answers in public forums is the
fourth most important feature for developers, yet it receives a
satisfaction score ten points lower than conferences, the 18th
most important feature. We know this because we ask
developers which developer program features are most
important to them, and how satisfied they are with the support
that technology companies provide. At this macro level,
measuring success (satisfaction, in this case) shines a light on
how resources are allocated ineffectively across the industry.
Now imagine taking this data-driven approach and applying it to
your internal processes. What might you find? What decisions
might you take? And how would you justify them?

When you use data to make these decisions, the justification
becomes easy. It’s right there in front of you. Why should you
divert resources away from organizing conferences, and towards
answering developers’ questions? Easy, because that’s what
developers want, and they’re currently not very happy with what

All profits from book sales will be donated to coding charities.

they’re getting. So measuring success lets you justify your
decision. Seen another way, if you can’t back up your decision
with data, are you sure it’s the right move?

But sometimes even the most data-driven decisions don’t turn
out how you expected - the ground shifts under your feet or a
competitor makes an unexpected move, or maybe a global
pandemic shakes things up a little. That’s OK, these things
happen. But by using data to drive your decisions, and
measuring the outcome, you can track your progress. You can
communicate your successes and failures. Most importantly, you
can quantify the impact of any changes. Not only changes that
you effect, but also changes imposed upon you. Because here’s
the thing: data begets more data. The next time you sense
trouble brewing on the horizon, you can look back in time
through your data and see what happened the last time the
ground moved under you. You can anticipate the scale of any
impact, and take steps accordingly, influencing the outcome.
Trust us, your boss will thank you.

In short, measuring success lets you decide what, exactly, you
should be doing, and how you should be doing it. It also lets you
make informed decisions and facilitates meaningful
communication with your team and with stakeholders.

Deciding what to measure

Hopefully, I’ve covered the why, and hopefully, you’re convinced
enough to carry on reading to find out the how. But you’ll have to
wait a little longer for that. Because before knowing how to
measure success, you need to know what you’re going to
measure. And before you even start to think about what to
measure, you need to understand what you want to change.

Because that’s what developer relations and marketing is all
about. It’s about creating and effecting the change that works
best for you and your developer community. The world is going
to change anyway, so why not get a hand on the steering wheel?

In order to know what changes you want to make, you need to
understand what your business goals are. Fundamentally, any
commercial developer relations program lives and dies by its
ability to increase usage. To increase usage by developers
already engaged with the platform, or to attract new developers
to the platform. But we need to be more specific; of course the
goal is to increase usage - that’s the direct (or often indirect) path

All profits from book sales will be donated to coding charities.

to putting money in the bank. But what is it that you specifically
want to achieve? Do you want to increase the frequency of
usage for a specific product or API? Do you want to inform
developers about an imminent major version and a potential
breaking change? (Preventing a decrease in usage is often
easier than driving an increase). Or do you simply want your
developers to know that you’re thinking of them?

Now, let’s zoom right in onto the developer. What do you want
them to do? What behavior do you want them to start? To stop?
To change? Fundamentally, what is the purpose of your
developer relations program? Nobody cares for meaningless
marketing, least of all busy software developers. So let’s get the
message clear, and consistent, and make sure it’s relevant.

In order to know the message, you must first understand your
audience. Are you marketing to existing customers, or are you
running an acquisition campaign? If you’re marketing to
developers that already use your product, it’s likely that you
already have loads of information about them. You’ll have usage
patterns, an email address, hopefully, some geodemographics,
and maybe even a company name. All of this data helps to build
your picture of what that developer does, what you want them to
do, how you talk to them, and how successful you can expect to
be.

But what about an acquisition campaign? Maybe you’re using
Facebook audiences or advertising on more specialist platforms.
Well, first of all, you want to know how many people you can
reasonably expect to reach. This data helps you answer that all-
important question, even before you begin. Is it worth it?

Is it worth it? Using data to inform and appraise

strategy

With our developer population calculator

(sdata.me/Calculator), you can figure out just how many

developers fit your target audience and where you can find them.
Looking for inexperienced professional developers? Then look
no further. Of the 917K professional developers with less than a
year’s experience, East Asia has 276K of them.

https://sdata.me/Calculator

All profits from book sales will be donated to coding charities.

Developing a regional strategy is one surefire way of getting
better at communicating with developers on their terms. We find
that not only do the socioeconomic factors in different regions
affect developers’ immediate views and desires, but also that
these differences echo at a macro level, shaping the way
technologies, and even vendors, are adopted in different regions.
For example, developers in Asian regions are consistently less-
satisfied with having access to resources in their native
language; unsurprisingly, given the anglocentric nature of
technological change to date. But this also means that
developers in these regions are quicker to take up emerging
technologies as they are less burdened by convention and
existing structures. So in this way, understanding your developer
audience through a regional lens would not only help shape your
short term tactical approach (translate resources aimed at
inexperienced professionals into popular languages in East Asia,

All profits from book sales will be donated to coding charities.

say) but would also contribute to your longer-term strategy by
adding another perspective to your expectations of your
product’s adoption rate.

One other important differentiating factor for developers is what
language they use. Understanding language usage patterns
amongst your developer audience will also help you to optimise
your short-term decision making, with an eye on the longer-term
strategy. Over half of our group of 910K inexperienced
professional developers are using JavaScript with a third using
Java or Python. This is interesting enough, but when compared
with experienced professionals (of which there are 13.6M), we
see that developers collect languages as their career
progresses. Two-thirds of these more experienced professionals
are using JavaScript and around 40% are using Java or Python.
It’s not surprising that developers are learning constantly, but
armed with the information that JavaScript, Python and Java are
used widely amongst early-career and experienced developers
(for now, at least!), you can safely invest in supporting these
language communities, knowing that your effort is unlikely to be
wasted.

All profits from book sales will be donated to coding charities.

If you’ve created a regional strategy and are segmenting
developers by language, you’re doing much better than most.
These two data points are easy to collect, easy to interpret, and
very powerful indeed. But there are as many ways of segmenting
your developer community as there are developers, and you can
use many different data points to create your developer
personas (though please don’t segment by technology! -

https://sdata.me/segment). Creating developer personas is

another common, and powerful, way of gaining a deeper
understanding into developers’ motivations and needs, and, just
as importantly, of sizing your potential audience.

Knowing how many developers there are helps you to
understand your penetration into a particular market. Will this
developer marketing campaign be looking to get those difficult,
marginal gains in a territory where you have already captured a

https://sdata.me/segment

All profits from book sales will be donated to coding charities.

lot of the market, or are you entering a market with lots of
headroom to grow? Knowing the size of your target audience
helps you to calibrate your expectations for your developer
marketing efforts. This information is especially powerful when
you combine it with first-hand experience on the success of your
efforts (here we’re referring to click-through rates, signups,
downloads and page views), and moves us nicely onto the next
stage of this approach, actually choosing which KPIs to track,
and who will be interested in them.

Knowing your audience

Developer marketing is a cross-disciplinary subject with many
stakeholders. On one side, you have the marketeers, those
responsible for interpreting the developer personas or segments
(you do segment your audience, right?), and creating the
messaging and branding that will draw these developers in. On
another side, you have the developer advocate. These are the
people who represent the developers’ point of view, because
they often are one. They understand how developers want to be
talked to and they have an ear to the ground for direct,
qualitative feedback from developers. Next, you have product
managers. At the core of any developer relations program is a
product, be it an API, a managed service, an IDE, or a
framework. One of the most surefire ways of ensuring that
developers use your product is to listen to them and act on that
feedback. Finally, you have the top-level managers and
executives who take a more holistic approach, looking at
success from several perspectives.

Each of these groups is going to want a slightly different view of
what developers do and think. Your marketeers want to know
how well developers engage with the communications,
messaging and campaigns. Your developer advocates might be
trying to understand the community dynamics or particular pain
points that developers face. And your product managers want to
know which features are being used, and what developers are
requesting next. In the next section, we’ll talk about what KPIs
we use at SlashData to give a nuanced but powerful view of the
success of a developer relations program that can be applied to
all these use cases and more.

Don’t forget the developers, either. Although they might not see
the results, they’re still important stakeholders in the success of
your developer relations efforts, maybe the most important.

All profits from book sales will be donated to coding charities.

Whichever metrics you choose will impact them more than any
other group. So choose KPIs that benefit the developer - KPIs
that value them like the asset they are.

Choosing a set of KPIs

OK, so you’ve got an idea of the art of the possible. Now it’s time
to look at what you can actually do with this knowledge. Here’s
where you decide which KPIs you should use to track success,
and this happens to be our particular area of expertise. At
SlashData, we measure success in developer relations in all
kinds of different ways. We measure developer satisfaction with
resources or with products; we measure engagement, adoption
and rejection. We understand what developers think is lacking,
and what they love. Most importantly, we back up our decisions
with hard science and contextualise them with experience and
expertise.

We use four metrics to give a 360-degree view of the
performance of a developer relations program. We selected
these metrics not only because they cover many different
aspects of measuring the success of developers relations, and
do so with very little overlap. In short, they are efficient and
effective:

Adoption rate - How many developers use a product or vendor

Engagement rate - How often developers use a vendor’s
resources

Satisfaction score - What developers think about a product or its
features

Reasons for adoption or rejection - Why developers chose (or
rejected) a product

These metrics work together to give a nuanced view of success
that’s not only relevant for people with different interests (such as
marketeers or product managers) but is also flexible enough to
measure the impact of many different changes to a developer
relations program. Here’s an example from our Developer
Program Benchmarking report that shows how the top developer
programs in the world compare against each other for adoption,
engagement and satisfaction:

All profits from book sales will be donated to coding charities.

You can clearly see how, when combined, these three metrics
allow for very fine differentiation between otherwise similar
developer programs. Take IBM and Intel, for example. When
comparing these two vendors by engagement or adoption, they
appear to be almost identical, however, the difference in
satisfaction between them allows us to tease out this important
difference. And when you can understand in fine detail the
differences between two developer programs (or products, or
regions etc.), then you can take targeted and meaningful action
to change the situation to your benefit. These KPIs, therefore,
allow for developer relations practitioners with different interests
to take meaningful and effective actions at a variety of levels.

Are you an executive interested in growing the developer

community in South Asia?

Consider looking at the changing adoption rates there. The wide-
angle view will give you an insight into the cumulative impact of
the different pillars of your developer relations strategy and
efforts, while a deeper dive into the data will help you to hone
this strategy and focus on what works for different segments.
Because our metrics are calculated from the opinions of
individual developers, we can look at the data from different

All profits from book sales will be donated to coding charities.

angles and understand who is using a product, what they think of
it, and how you can reach these developers.

Are you a product manager looking to optimize your feature

development budget?

Then you’ll be especially interested in why developers reject or
adopt a product. By looking at the adoption and rejection
reasons developers give for your product and your competitors,
you’ll be better able to carve out your niche in the product space.
You’ll understand why developers choose your product and be
able to take steps to protect this advantage, whilst at the same
time capitalizing on your competitors’ weaknesses.

Are you a marketer looking to understand the success of a

recent email campaign?

Developers’ engagement behavior will be especially interesting
for you. Understanding which of your products have the most
engaged developer community will shine a light on what you can
hope to achieve, and tracking changing engagement rates will
help you to understand what works best for the different
segments of your community.

Are you a developer advocate who wants to target

improvements to a product’s documentation?

Documentation satisfaction scores will help you to understand
where the gaps are and point towards those vendors leading the
way. You’ll be able to zoom in on users of a particular product or
language, or developers in a particular region, and make micro-
improvements to squeeze out those last marginal gains.

Our wealth of experience in measuring the success of developer
relations has led us to create this framework for selecting metrics
that will help you to effect positive change. The KPIs we use
were born from this framework. When you’re choosing a suite of
KPIs (and we do recommend selecting a few) to measure the
success of your developer relations program, here are a few
things to keep in mind:

Be realistic - this is where the groundwork of understanding the
market, and your performance within it, helps you to select
SMART objectives, with the emphasis here on ‘Achievable’ -
what can you actually influence.

All profits from book sales will be donated to coding charities.

Be considerate - and by that I mean, choose KPIs that are easy
to understand. Be considerate to your colleagues by not hiding
KPIs behind definitions and acronyms.

Know your data - you want to choose KPIs that are sensitive to
change, but not so sensitive that they fluctuate wildly. Choose
KPIs that you can calculate with the data you have, and
remember that you can always get someone else to help ;-)

Tell a story - remember, you’re trying to change behaviour.
You’re trying to change not only developers’ behaviour, but also
your colleagues’ behaviour. Telling a story is the most
compelling way to bring someone round to your way of thinking.
Choose KPIs which combine to tell a story and watch your team
come together to make it come true.

Think about the ramifications - We already know we’re trying
to change behaviour, but what about any unexpected changes?
Do the KPIs you’ve selected incentivise the right behaviour
amongst your team, or have you unwittingly created perverse
incentives for a negative behaviour change?

Let’s wrap things up

So here you have it. A window into the SlashData way of
selecting KPIs to measure the success of a developer relations
program. You’ve seen why we think that data-driven
measurement is so absolutely vital (and I hope you agree!).
You’ve read a few ideas on how to decide what to measure, and
how to think about your audience. Finally, you’ve been
introduced to the KPIs that we use to measure the best
performing developer programs in the world and you’ve also
seen a framework that will help you to select your own. This is
just the tip of the iceberg, you will discover more ways to boost
your developer relations program in this book and you can
always refer to devrelx.com for more free resources, including
Under the Hood of Developer Marketing podcast, webinars, free
graphs and more.

	How do you measure success and why does it matter?
	Deciding what to measure
	Is it worth it? Using data to inform and appraise strategy
	Knowing your audience
	Choosing a set of KPIs
	Are you an executive interested in growing the developer community in South Asia?
	Are you a product manager looking to optimize your feature development budget?
	Are you a marketer looking to understand the success of a recent email campaign?
	Are you a developer advocate who wants to target improvements to a product’s documentation?

	Let’s wrap things up

